HALF-INTEGER INDICES FOR ONE-DIMENSIONAL GAPLESS QUANTUM WALKS

YOHEI TANAKA

§1. Preliminaries

This talk is based mainly on index theory for chiral-symmetric unitary operators. More precisely, we shall focus on an abstract unitary operator U on a Hilbert space \mathcal{H}, which satisfies the following algebraic condition;

$$
\begin{equation*}
U^{*}=Г \cup \Gamma, \tag{1}
\end{equation*}
$$

where Γ can be any unitary self-adjoint operator on \mathcal{H}. Note that Γ allows us to decompose the underlying Hilbert space \mathcal{H} into an orthogonal sum of the form $\mathcal{H}=\operatorname{ker}(\Gamma-1) \oplus \operatorname{ker}(\Gamma+1)$ as is well-known, and that the chiral-symmetry condition (\mathbb{I}) implies that the spectrum of U, denoted by $\sigma(U)$, is symmetric about the real axis.

If U is a chiral-symmetric unitary operator satisfying (\mathbb{I}) and if $R=\left(U+U^{*}\right) / 2$ denotes the real part of U, then it follows from (II) that the self-adjoint operator R can be written as a diagonal block-operator matrix of the form $R=R_{1} \oplus R_{2}$ with respect to $\mathcal{H}=\operatorname{ker}(\Gamma-1) \oplus \operatorname{ker}(\Gamma+1)$. We obtain

$$
\begin{equation*}
\operatorname{ker}(U \mp 1)=\operatorname{ker}(R \mp 1)=\operatorname{ker}\left(R_{1} \mp 1\right) \oplus \operatorname{ker}\left(R_{2} \mp 1\right) . \tag{2}
\end{equation*}
$$

This motivates us to introduce $\operatorname{ind}_{ \pm}(\Gamma, U):=\operatorname{dim} \operatorname{ker}\left(R_{1} \mp 1\right)-\operatorname{dim} \operatorname{ker}\left(R_{2} \mp 1\right)$. Note that this formal index is well-defined, if $\pm 1 \notin \sigma_{\text {ess }}(U)$. We get $\left|\operatorname{ind}_{ \pm}(\Gamma, U)\right| \leq \operatorname{dim} \operatorname{ker}(U \mp 1)$ by (ㄹ) $)$.

§2. A Concrete example

We consider the following block-operator matrices on the Hilbert space $\ell^{2}\left(\mathbb{Z}, \mathbb{C}^{2}\right)=\ell^{2}(\mathbb{Z}, \mathbb{C}) \oplus \ell^{2}(\mathbb{Z}, \mathbb{C})$ of square-summable \mathbb{C}^{2}-valued sequences on \mathbb{Z} :

$$
\Gamma:=\left(\begin{array}{cc}
1 & 0 \tag{3}\\
0 & L^{*}
\end{array}\right)\left(\begin{array}{cc}
p & \sqrt{1-p^{2}} \\
\sqrt{1-p^{2}} & -p
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & L
\end{array}\right), \quad \quad \Gamma^{\prime}:=\left(\begin{array}{cc}
a & \sqrt{1-a^{2}} \\
\sqrt{1-a^{2}} & -a
\end{array}\right)
$$

where L is the left-shift operator on $\ell^{2}(\mathbb{Z}, \mathbb{C})$, and where $p=(p(x))_{x \in \mathbb{Z}}$ and $a=(a(x))_{x \in \mathbb{Z}}$ are two arbitrary sequences taking values in $[-1,1]$. Here, p, a are viewed as the multiplication operators on $\ell^{2}(\mathbb{Z}, \mathbb{C})$ in the obvious way. Since Γ, Γ^{\prime} are unitary self-adjoint by construction, the unitary operator $U:=\Gamma \Gamma^{\prime}$ satisfies the chiral-symmetry condition (II). This unitary operator is often referred to as the time-evolution operator of the so-called (one-dimensional) split-step quantum walk.

Theorem 1. Let us assume the existence of the following limits for each $\star=-\infty,+\infty$:

$$
\begin{equation*}
p(\star):=\lim _{x \rightarrow \star} p(x), \quad a(\star):=\lim _{x \rightarrow \star} a(x) . \tag{4}
\end{equation*}
$$

Then $\pm 1 \notin \sigma_{\text {ess }}(U)$ if and only if $p(\star) \mp a(\star) \neq 0$ for each $\star=-\infty,+\infty$. In this case, we have

$$
\begin{equation*}
\operatorname{ind}_{ \pm}(\Gamma, U)=\frac{\operatorname{sign}(p(+\infty) \mp a(+\infty))-\operatorname{sign}(p(-\infty) \mp a(-\infty))}{2}, \tag{5}
\end{equation*}
$$

where sign denotes the sign function, and where we set $\operatorname{sign} 0:=0$.
A sketch of proof. It follows from the half-step decomposition method $\mathrm{m}^{\text {that }} \pm 1 \notin \sigma_{\text {ess }}(U)$ if and only if $X_{ \pm}:=\left(\mp \sqrt{(1+p)(1 \mp a)}+\sqrt{(1-p(\cdot-1))(1 \pm a)} L^{*}\right) / 2$ is a Fredholm operator. In this case, ind $_{ \pm}(\Gamma, U)$ coincides with the Fredholm index of $X_{ \pm}$. The remaining part of the claim follows from the fact that $X_{ \pm}$ can be identified with the orthogonal sum of two Toeplitz operators constructed from (4) , since we have the invariance of the Fredholm index and essential spectum with respect to compact perturbations.

§3. A generalisation of the index formula

A bounded operator A on \mathcal{H} is called trace-compatible, if $A^{*} A-A A^{*}$ is of trace-class. For such A, we define

$$
\operatorname{ind}_{t}(A):=\operatorname{Tr}\left(e^{-t A^{*} A}-e^{-t A A^{*}}\right), \quad t \in \mathbb{R} .
$$

If the limit $w(A):=\lim _{t \rightarrow \infty} \operatorname{ind}_{t}(A)$ exists, then we call $w(A)$ the Witten index of A (see [BGGSS87] for details).

Theorem 2. Let U be the time-evolution operator of the split-step quantum walk, and let us assume the existence of limits of the form $(\mathbb{1})$. We also impose the following additional assumption;

$$
\begin{equation*}
\sum_{x=0}^{\infty}|\zeta(-x)-\zeta(-\infty)|+\sum_{x=1}^{\infty}|\zeta(x)-\zeta(+\infty)|<\infty, \quad \zeta=p, a . \tag{6}
\end{equation*}
$$

Then $X_{ \pm}$is trace-compatible, and the Witten index $w\left(X_{ \pm}\right)$is given by the right hand side of (II).
A derivation of this index formula requires some scattering theoretic tools such as the spectral shift function. Note that $\operatorname{ind}_{ \pm}(\Gamma, U)$ in ((\mathbb{I}) takes values from $\{-1,0,1\}$, since we assume $p(\star) \mp a(\star) \neq 0$ for each $\star=-\infty,+\infty$ as in Theorem [1]. On the other hand we have $w\left(X_{ \pm}\right) \in\{-1,0,1\} \cup\{-1 / 2,1 / 2\}$, since we remove this assumption in Theorem []].
[BGGSS87] D. Bollé, F. Gesztesy, H. Grosse, W. Schweiger, B. Simon, Witten index, axial anomaly, and krein’s spectral shift function in supersymmetric quantum mechanics, J. Math. Phys. 28(7), 1512-1525 (1987).
[CGWW21] C. Cedzich, T. Geib, A. H. Werner, R. F. Werner, Chiral floquet systems and quantum walks at half-period, Ann. Henri Poincaré 22(2), 375-413 (2021).

[^0]${ }^{1}$ This highly non-trivial step is one of the main topics of [CGWW21].

[^0]: Department of Mathematics, Gakushuin University, 1-5-1, Mejiro, Toshima, Tokyo, Japan 171-8588
 Email address: 20hs602a@gmail.com

